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ABSTRACT

Boundary layer transition from laminar to turbulent flow has been recognized as an
important feature in the through-flow of a gas turbine (Grab~m, 1979 and 1984: Mayle,
1991). Heat transfer in a turbulent boundary layer with a moderate Prandtl number is
typically treated as a passive process controlled by the turbulent momentum transport.
For a gas turbine blade, where as much as 50-80% of the turbulent blade surface is

covered with flow undergoing laminar-turbulent transition (Tumer, 1971), this relation
between momentum and thermal transport has not been venfied. In addition, turbine
blades are exposed to diverse pressure gradients that may compound these transport
differences. Recognizing and understanding the fundamental mechanisms involved in

transitional convective heat transfer are keys to improving the heat transfer modeling and
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enhancing the accuracy of thermal load predictions on gas turbine blades.

1l

A two-dimensional heated boundary layer undergoing natural laminar-turbulent
transition was investigated to isolate the effects of streamwise acceleration and to provide
insight into the fundamental mechanisms of momentum and thermal transport ;51

)

phenomena. Tests were conducted over a heated flat wall with zero pressure gradient and .
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three levels of streamwise acceleration: K = :V-;- " X =0.07, 0.16. and 0.25 x 106,
Ux dx

Free-stream turbulence intensities were maintained at approximately 0.5% for the
baseline case and 0.4% for the accelerating cases. A miniature three-wire probe was used
to measure mean velocity and temperature profiles, Reynolds stresses and heat fluxes,
and Pri. Transition onset and end were inferred from Stanton numbers and skin friction
coefficients. Conditional sampling was implemented to separate the data into turbulent
and non-turbulent portions and produce intermittency distribution.

Mild acceleration delays transition onset and increases transition length in terms of
distance, x, and Reynolds number based on x. Transition onset and length are relatively
insensitive to acceleration in terms of momentum thickness Reynolds number. This is
supported by boundary layer thickness and integral parameters which indicate that a
favorable pressure gradient suppresses boundary layer growth and development in the
transition region. Heat transfer rates and temperature profiles in the late-transition and
early-turbulent regions lag the development of wall shear stress and velocity profiles.
This lag increases as K increases indicating a slower evolution of heat transport compared
to momentum transport. This results in different distributions of eddy viscosity and eddy
thermal diffusivity within this region. The values of the Reynolds analogy factor, 2St/Cf,
in the late-transition and early-turbulent regions were lower than the value known to
apply to the high-Reynolds-number turbulent flow.
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The streamwise gradients of Reynolds normal stress, g and Reynolds heat flux,
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6_ . are shown to be of significant magnitude in the transition region and should not be
X

ignored in transitional flow models. The evolution of Reynolds shear stress in
transitional flow indicates that turbulent shear is generated within the boundary layer (Y *

= 70~100) and imposes on the wall shear. Conditional sampling reveals that structures

within the turbulent and non-turbulent portions are not simple extensions of an
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equilibrium turbulent boundary layer and a laminar boundary layer, respectively. This
implies that expenmentally measured data should be used as a base for the turbulent and
non-turhulent portions for modeling of transitional flow using intermittency function.
Nine different criterion functions for use in the heated transitional boundary layer
were investigated. Inherent differences are shown to exist between the turbulence

recognition capabilities of each criterion function. A criterion function based on the
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Reynolds shear stress, (;—) . for turbulent/non-turbulent discrimination in a heated

transitional boundary layer is considered superior to a single velocity or temperature

scheme.

EXECUTIVE SUMMARY

Statement of Work

The flow and thermal structures of a two-dimensional heated boundary layer
undergoing natural transition from laminar to turbulent flow were investigated in detail.
The primary objective of this investigation was to isolate the effects of streamwise
acceleration on this process and provide insight into the fundamental mechanisms of the
momentum and thermal transport phenomena using a conditional sampling technique. A
specially designed miniature three-wire probe was used to measure the Reynolds stresses
and heat fluxes within the transitional boundary layer. The primary conclusions from

each part of the investigation is summarized below.

Experimental Facility and Equipment

Wind Tunnel
The test facility employed in this research program was previously designed and
qualified by Kuan (1987). The facility was specifically designed for studies in two-
dimensional boundary laver flows. A schematic of the test facility is shown in Figure 1.

An open-circuit, blowing type wind tunnel is used. Air is drawn through a filter box by a




large fan and forced through an expansion duct, two gnds. a honeycomb structure, a heat
exchanger. a screen pack, through a contraction nozzle, and finally into the test section.
In order to provide the two dimensional flow required in this investigation, the test
section was designed with a large aspect ratio of 6. The test section was a 2.4 m long by
0.91 m high by 0.15 m wide rectangular section consisting of a heated test wall, an outer
observation wall, a top wall cover, and a bottom wall table. The heated test wall is

discussed below.

Heated Test Wall

The 2.4 m x 0.91 m test wall was heated to approximately 25°C above the free-
stream air temperature using a uniform heat flux between 250-300 W/m2. A composite
construction was utilized to ensure flexibility of the test wall for future streamwise
curvature studies (Figure 2). The back surface of the back wall was covered with 254 c¢m
of R30 Fiberglas insulation to minimize backplane conduction losses. A 4.68 mm Lexan
(polycarbonate plastic) plate was used as the primary support for the test wall (back wall).
Attached to the front surface of the Lexan support was a 1.5 mm thick heating pad. The
heating pad consisted of a heater foil sandwiched between glass cloth and silicon rubber
sheets. The heating foil was approximately 3.8 mm wide with a spacing of 1 mm
between each foil pass. The foil allowed uniform joule heating over the entire pad when
current from a DC power source was applied. A 1.56 mm thick aluminum sheet was
bonded to the front surface of the heater pad to ensure uniformity of the heat flux. 3M-
413 into the tape to allow installation of one hundred eighty-five 3-mil E-type
thermocouples. The grooves were filled with a high temperature RTV to protect the
thermocouples from bending stresses expected in future curvature studies. A 1.56 mm
sheet of Lexan was placed on the front surface of the 3M double sided tape to provide a
smooth test surface on which the air flows and measurements were taken.

The thermocouples were strategically placed along the test surface to ensure that the

evolution of the transitional flow process could be obtained. Seventy-four of the




thermocouples were located along the streamwise centerline of the wall with the
remaining thermocouples in cross-span locations (Figure 3). The spacing of the
centerline thermocouples was 2.54 cm for the first sixty followed by 5.08 cm for the
remaining centerline thermocouples. The cross-span thermocouples were uniformly
distributed across the span at seven locations 25.4 c¢m apart. The distance between the
cross-span thermocouples was 5.08 cm with fourteen thermocouples per span with the
exception of the second span. For the second span, where transition was expected to

begin on a flat plate. twenty-eight thermocouples were used with a spacing of 2.54 cm.

Geometry of Test Section

For the baseline case, with no acceleration. a zero pressure gradient was needed
~ along the entire test section. To account for the growth of the boundary layer on both the
inner test wall and the outer observation wall. the displacement between the two walls
was increased in the streamwise direction. The width between the two walls increased
approximately linearly from 15.24 cm at the inlet of the test section to 17.78 cm at the
exit of the test section. By individually adjusting the support ribs, the pressure
distribution inside the test section was maintained within | percent.

Three different favorable pressure gradients were utilized in this investigation. A
constant pressure gradient parameter, K, was maintained during each case. A constant K
can be directly related to the geometry of the test section. By linearly decreasing the wall
separation between the inlet and exit, a relatively constant K value could be obtained.
For each accelerating case, the inlet separation distance was maintained at 15.24 ¢cm and
the separation distance decreased linearly to the exit plane. An exit separation distance of
14.6 cm was used for the lowest accelerating case of K = 0.07 x 106 while an exit

separation distance of 8.9 cm was used for the highest accelerating case of K=0.25x106.




Three-Wire Probe

To measure the Reynolds heat fluxes in the transitional boundary layer. a miniature
three-wire probe was specially designed. This three-wire probe can measure all the
boundary layer data consisting of mean and fluctuating streamwise and cross-stream
velocity components, mean and fluctuating temperature, and Reynolds stresses and heat
fluxes. In order to make approximate point measurements and measurements close to the
wall, the measuring volume of the probe was kept to a minimum. Wollaston type
platinum coated tungsten wires with copper plated ends were utilized for the velocity
sensors (X array). The diameter of the velocity wires were set at 2.5-pm, the minimum
diameter for commercially available Wollaston type tungsten coated platinum wire. An
L/d ratio for the velocity wires was chosen as 200 to maintain good frequency response
and to minimize support prong interference. This L/d ratio resulted in an active sensor
length of 0.5 mm of the total wire length of 1| mm. A platinum temperature wire of
diameter 1.25-um was chosen as a trade-off between wire frequency response and wire
durability. A smaller diameter wire has a higher frequency response but is also more
fragile. The temperature wire had a length of 0.35 mm corresponding to the projected
sensor length of the X array, resulting in an [/d ratio of 280.

The sensor orientation and spacing involved a trade-off between prong and sensor
interference effects and spatial resolution. Blair and Bennet (1984), using similar sensor
dimensions, found a wire spacing of 0.35 mm minimized cross-talk error and signal
attenuation. Following their recommendations, a wire spacing of 0.35 mm was chosen.
The X wires were placed orthogonal to each other while the temperature wire was made
parallel to the X wire plane and normal to the mean flow direction. This orientation for
the temperature wire was chosen to eliminate any streamwise temperature gradients.
Also, since the temperature wire was operated in a constant current mode, this orientation

simplified the data reduction equations and resulted in a lower uncertainty.




To avoid the difficulty in bending three pairs of prongs while maintaining the
proper sensor arrangement as with a typical boundary layer probe. The probe support
was bent instead at an angle of 10° from the probe axis. This angle was chosen to ensure
that both of the X wires touched the wall simultaneously. A schematic of the probe and
sensor arrangement is shown in Figure 4. A complete description of the probe design and

qualification can be found in Shome (1991).

Summary of Results
Summary of the Baseline Case

The transition onset for the baseline case occurred at Rex = 5.5 x 105 (Reg = 492)
which is earlier than the transition onset for a FSTI value of 0.5% predicted from
empirical correlations. Apparently, factors other than FSTI influence transition onset.
Onset of transition was taken as the point when skin friction (and/or Stanton number)
deviates from the corresponding laminar correlation (Figure 5). Measurements of the
Reynolds normal stress indicated that the flow in the transition region is much less
isotropic than the flow in a fully turbulent boundary layer. The Reynolds shear stress was
shown to be generated within the boundary layer (Y * = 70 ~ 100) and impose on the wall
shear by influencing the mean velocity profile near the wall (Figure 6). Mean
temperature profiles lagged in development compared to the mean velocity profiles and
the values of the Reynolds analogy factor, 2St/Ct, in the late-transition and early-
turbulent regions were lower than the 1.2 value known to apply to the high-Reynolds-
number turbulent flow (Figure 7). These results indicate a slower response of heat
transport in this region compared to that of momentum transport.

. . . Jdu~
The streamwise gradients of the streamwise Reynolds normal stress, e and the
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streamwise Reynolds heat flux, F were shown to be of significant magnitude in the
X

transition region and should not be ignored in transitional flow models when

computational methods are used. The profiles of Reynolds cross-stream heat flux showed




negative values in the near wall region (Figure 8). The region of negative v narrowed as
the flow proceeded downstream. These negative values of vt in a flow with a negative
mean temperature gradient result in negative eddy thermal diffusivity and negative Pry,
which are not physically appropriate. [t is speculated that the negative values might be
caused by the size of the sensor and the three-dimensional behavior of transition.
Different distributions of eddy viscosity and eddy thermal diffusivity were observed and
reflect the apparent disparity between turbulent momentum and thermal transport

mechanisms in the transitional boundary layer (Figures 9 and 10).

Summary of the Streamwise Accelerating Cases

Streamwise acceleration was shown to delay the point of transition onset both in
terms of physical distance, x, and Reynolds number based on x (Figures 11 and 12). The
transition onset momentum Reynolds number, Regs, was relatively insensitive to
acceleration. In general, the physical length of transition increased with increasing K.
However, the transition length in terms of Rey was relatively constant with increasing K
(Table 1). This was supported by the boundary layer thickness and integral parameters
which indicated that an increasing pressure gradient suppresses boundary layer growth
and development through the transition region (Figure 13). The Reynolds normal stresses
were suppressed in the near-wall region (Y*+ < 50) relative to the baseline case as K
increased (Figures 14, 15 and 16). This was believed to be caused by a thickening of the
viscous sublayer relative to the boundary layer thickness. The lag that was observed
between the mean temperature profiles and the mean velocity profiles for the baseline
case became more pronounced with increasing K (Figures 17 and 18). Comparison of the
evolution of RMS temperature fluctuations to the evolution of Reynolds normal stresses
indicated a lag in the RMS temperature fluctuations. This supported the observation from

the mean temperature and velocity profiles that the thermal transport lags behind the




momentum transport in the transition region and that the effect is more pronounced as K

increases.

Summary of the Conditional Sampling Technique

Nine different criterion functions for use in the heated transitional boundary layer

were investigated (Figure 19). A cnitenion function based on Reynolds stress., (d“%.n)_ .

resulted in the sharpest demarcation between turbulent and non-turbulent portions of the
flow (Figure 20). This criterion function also had a negligible variation of threshold
value throughout the transition region with the lowest sensitivity of the resultant
intermittency to the vanation of the threshold (Figure 21). These results indicate that
using the Reynolds shear stress for turbulent/non-turbulent discrimination in a heated
transitional boundary layer is superior to a single velocity or temperature scheme.
Criterion functions based on correlations schemes consistently resulted in intermittency
values 0.14 to 0.38 lower in the outer boundary layer region (y/d* > 4.0) than the values
found from single signal schemes (Figure 22). No differences were found using the
temperature based criterion function to support the use of a separate thermal intermittency
factor in accelerating flows. Inherent differences were shown to exist between each
criterion function’s turbulence recognition capabilities. Each criterion function weights
different areas within a turbulent burst differently. As a result, different criterion
functions may result in the same overall intermittency factor but analysis of the turbulent
and non-turbulent portions would not always yield the same result (Figures 23 and 24).
Peak values in intermittency for the early .0 mid-transitional regions were found to
occur away from the wall at approximately y/6 = 0.3 for the baseline case and three
accelerating cases (Figure 25). To match the universal intermittency distribution of
Dhawan and Narasimha (1958), the values of intermittency at the near-wall minimum y/d
= 0.1 should be used as the representative “near-wall” values. For the accelerating cases,

two linear regions of different slopes were observed when intermittency was presented in




HT') versus x coordinates (Figure 26). Narasimha (1985) termed this sudden change in
flow behavior “subtransition™ indicating the flow changes from a subcritical to a

supercritical state.

Summary of the Conditional Sampling Resuits

The conditionally sampled distnibution of the skin friction coefficients revealed
values for Cf in the non-turbulent and turbulent portions significantly deviated from the
respective laminar and turbulent correlations. Reconstructing the local overall Cf value
using the laminar and turbulent correlations consistently overestimates the experimentally
determined unconditioned C{ values (Figure 27). The results indicate that a single
representative near-wall intermittency value may not be the charactenstic property for the
transition region and that the ['(y) variation may play a more important role than
previously thought. Evaluation of the conditionally sampled momentam thickness
confirmed that the higher loss of momentum in the transition region is a direct result of
the turbulent portion of the boundary layer. The mean velocity profiles from the
turbulent portions had the appearance of a low-Reynolds-number turbulent boundary
layer with a large wake region (Figure 28). In the late transition region. as K increased.
the wake region in the turbulent portion was suppressed relative to the unconditioned
result (Figure 29).

The increased magnitude of the streamwise Reynolds normal stress was discovered
to be a direct result of the fluctuations in the turbulent portions and not a result of the
“mean-step” contribution (Figure 30). The peak intensity of the streamwise Reynolds
normal stress in the non-turbulent portion was suppressed at an earlier stage as K
increased (Figure 31). The Reynolds shear stress was normalized by the individual Cf
values obtained for each portion (Figures 32 and 33). The peak magnitudes of Reynolds
shear still exceeded the wall shear but not by the magnitudes seen in the baseline case.
The results indicated that the turbulent shear was generated in the boundary layer at Y*

= 100 and imposes on the wall shear and that the “mean-step” contribution was
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negligible. As K increased, w in the turbulent portion was more nniformly distnbuted
through the inner boundary layer than the unconditioned results (Figure 34). The peak
intensity in the RMS temperature fluctuations in the non-turbulent portions increased in
maenitude and eventually became greater than the turbulent and unconditioned values in
the late transition region. The streamwise Reynolds heat flux in the turbulent portion

increased in magnitude as K increased (Figures 35, 36, and 37).

Overall Conc'usions

The development of the mean temperature profiles were shown to lag behind the
development of the mean velocity profiles indicating differences in the mechanisms of
thermal transport and momentum transport. This lag increased as K increased. In
performing numerical analysis of transitional boundary layers, the thermal transport
cannot be directly inferred from the momentum transport by a simple extension of
Reynolds analogy.

The common practice of using intermittency in calculating transitional boundary
layer flows requires modification. Conditional sampling of the Reynolds stresses and
heat fluxes reveal that structures within the turbulent and non-turbulent portions are not
simnple extensions of an equilibrium turbulent boundary layer and a laminar boundary
layer. respectively. Experimentally measured data should be used as a base for the
turbulent and »on-turbulent portions, not laminar and fully turbulent flow. The

, ) du dut .
streamwise gradient ierms, such as T and 3—- should be retained in the boundary
X X

layer equations for numerical calculation. Also, the I'(y) variation may play a more
important role than previously thought and using a single representative near-wall
intermittency value may not be adequate.

Caution should be used when implementing a criterion function for use n a

transitional boundary layer. Different criterion functions may re<ult in the same overall
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value of intermittency but the analysis of the flow and thermal structures may not have

similar results.

Recommendations

The results of the present study indicate the need for further investigation of the
mechanisms of transport of momentum and heat in boundary layers undergoing laminar
to turbulent transition. In light of the results of the present study the following

recommendations are made for future work:

Further investigations into the occurrence of negative cross-stream Reynolds
heat flux must be performed. Two steps should be taken. First, a new design
should be implemented for the three-wire probe preferably by placing the
temperature sensor between the two velocity sensors in order to resolve the
issue of spatial resolution. Second, the span-wise Reynolds heat flux should be
measured and a local balance of the heat transport performed to more
thoroughly investigate the three-dimensional transport.

The concept of using a single representative near-wall intermittency value
requires further investigation. An experimental technique should be developed
to enable simultaneous measurements within the boundary layer in a cross-
stream plane. Using this technique, a single representative near-wall
intermittency value could be used to separate the flow throughout the boundary
layer.

A detailed spectral investigation for the conditionally sampled data within each
portion should be performed. This would provide additional insight into the
development of the cascade process within the turbulent spot during the
transition process and determine the magnitude of damping of the sinusoidal
oscillations in the non-turbulent portion due to streamwise acceleration.

The combined effects of streamwise acceleration in the presence of elevated

FSTI should be performed. This will provide information into the extent of
interaction between the free-stream and the accelerating boundary layer.

OTHER PERSONNEL ASSOCIATED WITH THIS PROGRAM
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NOMENCLATURE
Cr - skin friction coefficient, Tw/(p U ©02/2)
Cp - pressure coefficient, 15 _:'e'
5 pUz ret
d - sensor diamter
E - voltage
ESTI - freestream turbulence intensity, J( MEFSVEIRESY 3/Ur
H - shape factor, d*/0
. A\ de
K - pressure gradient parameter, —
Uz dx
L - sensor length
M - frequency response
n - turbulent spot production rate
N - number of data readings
Ps - static pressure
Pr¢ - turbulent Prandtl number, (E/&G/ay)/(\—/t-/ af/ay ) '
q” - heat flux
Re - Reynolds number
St - Stanton number, q'v'v/lpCpGoo('fw—f ad)l
t - fluctuation in temperature
T - instantaneous temperature
T - mean temperature
t’ - rms value of temperature fluctuations
T+ (Tw _T) th/p
9"/ (eCp)
u,v,w - instantaneous velocity fluctuations in streamwise, cross-steam, and spanwise
directions

u’.v’ - rms values of velocity fluctuations




Greek

o*

A2

eH
eM

fnction velocity, Jvt,. /p

instantaneous velocity

mean velocity

l—J/u-;

Reynolds shear stress

Reynolds streamwise heat flux
Reynolds cross-stream heat flux
coordinate in streamwise direction
coordinate normal to the surface

yug/v

thermal diffusivity

boundary layer thickness at 0.995 Ue
displacement thickness

enthalpy thickness

dissipation rate

turbulent (or eddy) thermal diffusivity

turbulent (or eddy) viscosity

82 dU,

Pohlhausen pressure gradient parameter, — "
v dx

. I R——— Y
integral length scale, Uaefu(t)u(t+1:) / u” dt
0

intermittency factor

] ) Rey —Rey
dimensionless length, ~——————
ey —Rey

kinematic viscosity
momentum boundary layer thickness
density

time




Tw - shear stress on the wall

Subscripts

ad - adiabatic

amb - ambient

an - anemometer

cl - conduction layer

corr - corrected

crit - cntical value

o - free-stream value

E - transition end

nt - non-turbulent

ref - reference location at x = 20 cm

s - transition onset

t - turbulent

w - at the wall
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Table 1 Reynolds numbers at onset and end of transition for all test cases
(Note: ****_indicates no end of transition was observed in the test facility).

“Baseline K1=0.07x10- K2=0.16x10- K3=0.25x10°
6 6 6
FSTI at x¢ 0.5 04 04 04
U {(m/s) at -
Stal (x = 18 cm) 12.24 12.68 12.20 12.45
] x(cm) 68 107 s 122
Onset of Rex 550x10° 946x10° 103x10° 125x10°
transition Rey* 1294 1322 1233 1233
Reg 492 541 544 552
x(cm) 137 168 213 Ak ok
End of Rex 11.2x105 157x105 21.7x105 bk
transition Reg* 1826 1874 1880 *EKK
Reg 1302 1282 1235 *kokok
x(cm) 69 61 98 * %k
Length of Rex 570x10° 624x105 11.4x105 Rrkk
transition Reg* 532 552 647 *okkk
810 741 691 kK

Reg
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Figure 4 3-wire boundary layer sensor for measuring Reynolds stresses and heat fluxes.
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Figure 8 Cross-Stream Reynolds heat flux distribution for the baseline case.
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Figure 23 Comparison of streamwise Reynolds normal stress for different criterion functions

(station 06, T" = 0.5, baseline case).
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Figure 26 Determination of x and corresponding representative near-wall intermittency in
I versus x coordinates using the value of T at different y/d locations as the representative

intermittency.
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Figure 27 Conditionally sampled skin friction coefficient.
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